skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Roy, Sujit"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract Gravity waves (GWs) make crucial contributions to the middle atmospheric circulation. Yet, their climate model representation remains inaccurate, leading to key circulation biases. This study introduces a set of three neural networks (NNs) that learn to predict GW fluxes (GWFs) from multiple years of high‐resolution ERA5 reanalysis. The three NNs: a ANN, a ANN‐CNN, and an Attention UNet embed different levels of horizontal nonlocality in their architecture and are capable of representing nonlocal GW effects that are missing from current operational GW parameterizations. The NNs are evaluated offline on both time‐averaged statistics and time‐evolving flux variability. All NNs, especially the Attention UNet, accurately recreate the global GWF distribution in both the troposphere and the stratosphere. Moreover, the Attention UNet most skillfully predicts the transient evolution of GWFs over prominent orographic and nonorographic hotspots, with the model being a close second. Since even ERA5 does not resolve a substantial portion of GWFs, this deficiency is compensated by subsequently applying transfer learning on the ERA5‐trained ML models for GWFs from a 1.4 km global climate model. It is found that the re‐trained models both (a) preserve their learning from ERA5, and (b) learn to appropriately scale the predicted fluxes to account for ERA5's limited resolution. Our results highlight the importance of embedding nonlocal information for a more accurate GWF prediction and establish strategies to complement abundant reanalysis data with limited high‐resolution data to develop machine learning‐driven parameterizations for missing mesoscale processes in climate models. 
    more » « less
  2. Abstract Global climate models parameterize a range of atmospheric‐oceanic processes, including gravity waves (GWs), clouds, moist convection, and turbulence, that cannot be sufficiently resolved. These subgrid‐scale closures for unresolved processes are a substantial source of model uncertainty. Here, we present a new approach to developing machine learning (ML) parameterizations of small‐scale climate processes by fine‐tuning a pre‐trained AI foundation model (FM). FMs are largely unexplored in climate research. A pre‐trained encoder‐decoder from a 2.3 billion parameter FM (NASA and IBM Research's Prithvi WxC)—which contains a latent probabilistic representation of atmospheric evolution—is fine‐tuned (or reused) to create a deep learning parameterization for atmospheric gravity waves (GWs); a process unseen during pre‐training. The parameterization captures GW effects for a coarse‐resolution climate model by learning the fluxes from an atmospheric reanalysis with 10 times finer resolution. A comparison of monthly averages and instantaneous evolution with a machine learning model baseline (an Attention U‐Net) reveals superior predictive performance of the FM parameterization throughout the atmosphere, even in regions excluded during pre‐training. This performance boost is quantified using the Hellinger distance, which is 0.11 for the baseline and 0.06 for the fine‐tuned model. Our findings emphasize the versatility and reusability of FMs, which could be used to accomplish a range of atmosphere‐ and climate‐related applications, leading the way for the creation of observations‐driven and physically accurate parameterizations for more earth system processes. 
    more » « less